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Abstract

Taxonomy of the live-bearing fish of the genus Ilyodon Eigenmann, 1907 (Goodei-

dae), in Mexico, is controversial, with morphology and mitochondrial genetic analy-

ses in disagreement about the number of valid species. The present study

accumulated a comprehensive DNA sequences dataset of 98 individuals of all Ilyo-

don species and mitochondrial and nuclear loci to reconstruct the evolutionary his-

tory of the genus. Phylogenetic inference produced five clades, one with two sub-

clades, and one clade including three recognized species. Genetic distances in mito-

chondrial genes (cytb: 0.5%–2.1%; coxI: 0.5%–1.1% and d-loop: 2.3%–10.2%) were

relatively high among main clades, while, as expected, nuclear genes showed low

variation (0.0%–0.2%), with geographic concordance and few shared haplotypes

among river basins. High genetic structure was observed among clades and within

basins. Our genetic analyses, applying the priority principle, suggest the recognition

only of Ilyodon whitei and Ilyodon furcidens, with I. cortesae relegated to an invalid

species, the populations of which belong to I. whitei.
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1 | INTRODUCTION

The geological history of Central Mexico is characterized by high

tectonic and volcanic activity since the Miocene, at least 16 Mya

that continues to the present, generating an ongoing process of

hydrological reconfiguration (Ferrari, Conticelli, Vaggelli, Potrone, &

Manetti, 2000). This dynamic geomorphology has been postulated as

the primary cause of the complex evolutionary history of the fresh-

water fish fauna of Central Mexico, exceeding the effects of biologi-

cal characteristics and the evolution of climate conditions (Barbour,

1973; Dom�ınguez-Dom�ınguez, Doadrio, Mart�ınez-Meyer, Zambrano,

& P�erez-Ponce de Le�on, 2006; Dom�ınguez-Dom�ınguez et al., 2010;
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P�erez-Rodr�ıguez, Dom�ınguez-Dom�ınguez, Doadrio, Cuevas-Garc�ıa, &

P�erez-Ponce de Le�on, 2015; Smith, 1980). Of the nearly 100

described species of freshwater fish in Central Mexico, ~70% are

endemic (Miller, Minckley, & Norris, 2005) as a result of paleogeo-

logical isolation processes, especially volcanism and tectonic events.

Studies of endemic and native freshwater fishes in Central Mexico

have chiefly focussed on phylogeny based on DNA sequences or

biogeographic aspects of complete groups of fishes in Mexico (Cor-

ona-Santiago, Doadrio, & Dom�ınguez-Dom�ınguez, 2015; Doadrio &

Dom�ınguez, 2004; Dom�ınguez-Dom�ınguez, P�erez-Rodr�ıguez, Esca-

lera-V�azquez, & Doadrio, 2009; Dom�ınguez-Dom�ınguez et al., 2010;

P�erez-Rodr�ıguez, Dom�ınguez-Dom�ınguez, P�erez-Ponce de Le�on, &

Doadrio, 2009; P�erez-Rodr�ıguez et al., 2015; Sch€onhuth & Doadrio,

2003; Sch€onhuth, Doadrio, Dom�ınguez-Dom�ınguez, Hillis, & May-

den, 2008), while within-species phylogeographic studies are scarce

(Dom�ınguez-Dom�ınguez, Alda, P�erez-Ponce de Le�on, Garc�ıa-Garita-

goitia, & Doadrio, 2008; Mateos, Sanjur, & Vrijenhoek, 2002), espe-

cially of species distributed in Central Mexico Pacific drainages

(CMPD) (Dom�ınguez-Dom�ınguez et al., 2006; Mateos, 2005; Piller,

Kenway-Lynch, Camak, & Dom�ınguez-Dom�ınguez, 2015).

Phylogeographic and population studies are essential tools in under-

standing evolutionary patterns and provide useful information on

genetic isolation of populations on a geographic and temporal scale.

Phylogeographic data are especially relevant when the populations

studied are under threat, as is the case for the Central Mexico

endemic subfamily Goodeinae (Dom�ınguez-Dom�ınguez & P�erez

Ponce de Le�on, 2007). Phylogeographic studies can identify diver-

gent populations and evolutionarily isolated lineages undetected by

traditional taxonomy (Dom�ınguez-Dom�ınguez et al., 2008; Mateos,

2005; Piller et al., 2015).

The goodeids in Central Mexico include the endemic subfamily

Goodeinae represented by approximately 19 genera, including Ilyo-

don, and 40 species of viviparous fishes with internal fertilization

and matrotrophy (Doadrio & Dom�ınguez, 2004; Dom�ınguez-Dom�ın-

guez & P�erez Ponce de Le�on, 2007). Geographic distribution of Ilyo-

don is limited in the CMPD to the main basin of the Balsas River

and the adjacent Coahuayana, Armer�ıa, Ameca, Purificacion, and

Marabasco River basins (Figure 1).

Species of Ilyodon have long been taxonomically controversial.

Five species have been described: Ilyodon whitei (Meek, 1904),
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Ilyodon furcidens (Jordan & Gilbert, 1882), Ilyodon xantusi (Hubbs &

Turner, 1939), Ilyodon lennoni Meyer & F€oerster, 1983, and Ilyodon

cortesae Paulo-Maya & Trujillo-Jim�enez, 2000. However, opinions

have differed with regard to the number of valid species. The catalog

of fishes (Eschmeyer, Fricke, & Van der Laan, 2016) includes four

valid species (I. whitei, I. furcidens, I. lennoni, and I. cortesae), whereas

taxonomy based on molecular studies has identified only I. whitei

and I. furcidens (Doadrio & Dom�ınguez, 2004). The results of a com-

prehensive study of Goodeidae, including all species of Ilyodon, using

a single mitochondrial DNA gene, did not find monophyletic groups

(Dom�ınguez-Dom�ınguez et al., 2010).

At the population level, morphological and genetic data also gen-

erate wide discussion of Ilyodon speciation vs. phenotypic plasticity

in previously separated species or subspecies (Kingston, 1979;

Turner & Grosse, 1980). Two trophic morphs found in sympatry in

the Coahuayana and Armer�ıa River basins, described as I. furcidens

and I. xantusi, have been considered the same species with an incipi-

ent signature of reproductive isolation, resulting from trophic differ-

entiation (Grudzien & Turner, 1984a,b; Turner & Grosse, 1980).

The present study comprises a comprehensive report of Ilyodon,

including all identified species throughout their distribution range

and DNA sequences analyses of three mitochondrial and two nuclear

markers. The use of combined mitochondrial and nuclear genes

allows a better understanding of the evolution and taxonomy of Ilyo-

don. The aims of the study were to infer the evolutionary history of

Ilyodon and elucidate the relationships among described species.

2 | MATERIALS AND METHODS

2.1 | Fish sampling

Ninety-eight specimens of I. cortesae, I. furcidens, I. lennoni, and I.

whitei from throughout their distribution range were collected from

the east, central, and west sub-basins of the Balsas River basin, as

well as the Coahuayana, Armer�ıa, and Ameca River basins (Figure 1).

Ilyodon xantusi has been described from a tributary of the Armer�ıa

River, near Colima city. In this work, following Turner and Grosse

(1980), we considered I. xantusi a junior synonym of I. furcidens.

Fish were captured by electrofishing and trawl nets and anes-

thetized with tricaine mesylate (MS-222). A fin fragment of each fish

was preserved in 95% ethanol for DNA extraction. A maximum of

five specimens from each locality were preserved in 5% formalin and

deposited in the fish collection of several institutions, approved by

the Ministry of Environment and Natural Resources for Mexico

(SEMARNAT), with the permission number: SGPA/DGVS/08473/15.

The remaining fish were released at the capture site. The fin clips

were deposited in the fish collection at the Universidad Michoacana

de San Nicol�as de Hidalgo, M�exico (SEMARNAT registration number

MICH-PEC-227-07-09), the fish collection of the Universidad

Aut�onoma del Estado de Morelos, M�exico (SEMARNAT registration

number MOR-CC-243-201), and the collection of the Museo Nacio-

nal de Ciencias Naturales, Spain (Table 1). Based on published

reports and available samples, we used Allodontichthys as outgroup

(Doadrio & Dom�ınguez, 2004; Dom�ınguez-Dom�ınguez et al., 2010).

Information on sampling is provided in Table 2.

2.2 | DNA Extraction, amplification, and sequencing

Total genomic DNA was isolated with the Qiagen Dneasy Tissue and

Blood Kit (Qiagen, Valencia, CA, USA) following the manufacturer’s

protocol. Fragments of three mitochondrial genes and two nuclear

genes were amplified: cytochrome b (cytb: 533 bp), cytochrome oxidase

sub-unit I (coxI: 626 bp), and control region (d-loop: 441 bp), for a total

of 1600 bp from 98 individuals, and a fragment of the nuclear b-actin

gene (ACTB: 979) and the exon 3 of the recombination-activating gene

1 (RAG1: 1453), for a total of 2432 bp from a subset of 51 individuals,

representing the variation found in mtDNA haplotypes. Polymerase

chain reactions (PCRs) were conducted in a reaction volume of 12.5 ll

containing 4.25 ll ultrapure water, 0.5 ll of each 0.2 lM primer,

6.25 ll Dream Taq Green PCR Master Mix 2x (Thermo Scientific, Wal-

tham, MA, USA), and 1 ll (ca 10–100 ng) of DNA template. The pro-

tocols for amplification are presented in Table S1. The PCR products

were purified using ExoSAP-IT (USB Corp. Cleveland, OH, USA) and

submitted to Macrogen Inc. (Netherlands) for sequencing. Nucleotide

sequences were edited and aligned in Mega v. 6.06 (Tamura et al.,

2013). The sequences of ACTB showed heterozygous positions

defined by indels, and a manual reconstruction of the two allele

phases was performed following the procedure described by Sousa-

Santos, Robalo, Collares-Pereira, and Almada (2005). The d-loop and

ACTB genes showed ambiguously aligned positions that are shown in

Table S2. For the RAG1 gene, the phase of heterozygous genotypes

was resolved using DNAsp v. 5.10 (Librado & Rozas, 2009) and con-

ducted with the algorithm provided by PHASE v. 2.0 (Stephens &

Donelly, 2003). Recombination of nuclear genes was assessed with

the phi test in Splitstree v. 4.13 (Huson & Bryant, 2006) and did not

find significant evidence for recombination in either gene (p = 1 for

both). Codification of amino acids was used to verify the alignment

and the absence of stop codons. The obtained sequences were depos-

ited in GenBank under accession numbers for cytb: KY204452-

KY204540, for coxI: KY118827-KY118914, for d-loop: KY204628-

KY204716, for ACTB: KY204717-KY204778, and for RAG1:

KY204541-KY204627 (Table S3). All raw data: alignments of each one

of the genes, are shown in Dataset S1, S2, S3, S4 and S5.

2.3 | Phylogeny based on DNA sequences and

haplotype networks

The incongruence length difference test (partition homogeneity test;

Farris, K€allersj€o, Kluge, & Bult, 1995) was conducted in Phylogenetic

Analysis Using Parsimony* and other methods (PAUP*) v. 4.0b10

(Swofford, 2003) to evaluate the significance of conflict among data-

sets, using 1000 resampling of characters. Phylogenetic analyses

were conducted for each gene, for the concatenated dataset for

mitochondrial genes, and for the five genes combined. Model selec-

tion based on the Akaike information criterion and optimal partition-

setting analyses, conducted using PartitionFinder v. 1.1.0 (Lanfear,
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Calcott, Ho, & Guindon, 2012), suggested that optimal partition set-

ting was obtained by assigning a substitution model for each gene

(Table S4). Genetic trees were constructed using maximum likelihood

and Bayesian inference. Maximum likelihood analyses were carried

out using RAxMLGUI v.1.3.1 (Silvestro & Michalak, 2012; Stamatakis,

2014), with the substitution model GTR + gamma and 10,000 boot-

strap replicates.

The relative stability of clades was evaluated by 1,000 nonpara-

metric bootstrap replicates (Alfaro, Zooler, & Lutzoni, 2003). Baye-

sian analyses were implemented using MrBayes v. 3.2.1 (Ronquist

et al., 2012). The analysis was run for 10 million of generations, with

two independent runs implementing four Markov chain Monte Carlo

(MCMC) processes, sampling every 100 generations. We evaluated

the chain convergence with the log-likelihood (�InL) values of the

runs on Tracer v. 1.5 (Rambaut & Drummond, 2007), discarding 10%

of generations as burn-in to construct the consensus tree

(r = 0.0002).

To determine the geographic correspondence with the genetic

structure, a haplotype network for each gene was constructed using

the median-joining algorithm as implemented in Network v. 4.6.1.3

(Bandelt, Forster, & R€ohl, 1999).

2.4 | Genetic distances and structure

To analyze the genetic structure of populations of Ilyodon spp., we

conducted analyses of molecular variance (AMOVA) and calculated

TABLE 1 Geographical information, collection where the tissue is deposited and the voucher number of the sample

Locality GPS coordinates Fish collection Tissue voucher number

R�ıo Ameca, puente la muerta 20°31044″N, 104°7047.3″W MNCN 31943, 31944, 31945, 31946

R�ıo Armer�ıa 19°5101.3″N, 104°1700.0″W MNCN 31971

Arroyo Chacambero 18°20044.53″N, 100°43043.97″W MNCN 32155, 32156, 32157, 32752

R�ıo Las Trojes 19°05038.8″N, 101°49033.5″W MNCN 32158, 32159

Presa Copales 20°13049.2″N, 104°11042.9″W MNCN 33008

Presa Tacot�an 20°3042.78″N, 104°18043.67″W MNCN 64259

R�ıo Las Rosas 20°54051.27″N, 104°4501.75″W MNCN 4266, 64367, 64368

R�ıo Cajones 19°9013.59″N, 102°4023.7″W UMSNH 5179, 5180

R�ıo Ahuacapan 19°39054.21″N, 104°19019.79″W UMSNH 8842, 8843

Manantial Cutzar�ondiro 19°1100.6″N, 101°3008.3″W UMSNH

MNCN

9162, 9164, 9166

64229, 64230

Manantial Tocumbo 19°4207″N, 102°30060″W UMSNH 9260, 9984, 9986

Arroyo El Tule, Tuxpan 19°19032.3″N, 103°22018.8″W UMSNH 9267, 9268, 9269

Los Horcones 19°35048.1″N, 102°54015.2″W UMSNH 9393

Potrero Grande 20°31015″N, 104°7036″W UMSNH 9938, 9940, 9942, 9946

Achacales 19°42014.1″N, 104°8037.9″W UMSNH 11989, 11990, 11991

Atenquique, Tuxpan 19°31046.35″N, 103°25056.39″W UMSNH 12018, 12019

San Jer�onimo, Tuxpan 19°41042.3″N, 103°2108.2″W UMSNH 12033

Los Pitayos, Tuxpan 19°45035.3″N, 103°1108.4″W UMSNH 12056

Arroyo La Purisima, Tuxpan 19°31019.8″N, 103°20032.9″W UMSNH 13042

Arroyo cor�ondiro, Nueva Italia. 19°4046.7″N, 102°402.5″W UMSNH 36420, 36421, 36422, 36423, 36424

Barranca de Cuernavaca, Morelos 18°5200″N, 99°6038.6″W UMSNH 36434, 36435, 36436, 36437, 36438

Barranca San Andr�es de la Cal 18°57041.1″N, 99°7046″W UMSNH 36444, 36445, 36446, 36447, 36448, 36449

R�ıo Apatlaco, Jojutla 18°3300″N, 99°1400″W UAEM 51

R�ıo Chinapa, Tzitzio 19°20050.8″N, 100°5506.7″W UMSNH 36415,36416, 36417, 36418, 36419

R�ıo Cuautla, el ojito 18°49018.3″N, 98°5600.1″W UMSNH 36429, 36430, 36431, 36432, 36433

R�ıo Rijo, Iz�ucar de Matamoros 18°37023.8″N, 98°33039″W UAEM 52, 53, 54, 55

R�ıo Zitacuaro, Tuzantla 19°12018.3″N, 100°32024.2″W UMSNH 36406, 36407, 36408, 36409, 36450

R�ıo Yautepec, Oaxtepec 18°53055″N, 98°58059″W UMSNH 36439, 36440, 36441, 36442, 36443

R�ıo Zicuir�an, Zicuir�an 18°5301.4″N, 101°58035.7″W UMSNH 36410, 36411, 36412, 36413, 36414

R�ıo Tac�ambaro, Puruar�an 19°1100.6″N, 101°3008.3″W UMSNH 36425, 36426, 36427, 36428, 36451

R�ıo Cupatitizio, Parque Uruapan 19°23019″N, 102°0051″W MNCN

UMSNH

33649

9584, 9585

UMSNH, Universidad Michoacana de San Nicol�as de Hidalgo; UAEM, Universidad Aut�onoma del Estado de Morelos; MNCN, Museo Nacional de

Ciencias Naturales
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the components of the fixation index ΦCT (variation between

groups), ΦST (variation within populations), and ΦSC (variation among

populations within groups) using Arlequin v. 3.5.1.3 (Excoffier & Lis-

cher, 2010). The analyses were implemented for the five genes sepa-

rately, as well as grouped, according to various criteria to estimate

partitioning of the genetic variance at different hierarchical levels

(Excoffier, Smouse, & Quattro, 1992). The first analysis considered

each hydrological basin as a group. In the second analysis, each

group comprised species that have been described and recognized

as valid. Finally, in a third analysis all recovered groups within the

main clades in phylogenetic inference were considered as groups.

Analyses were performed using 10,000 permutations to significance

values estimated in Arlequin v. 3.5.1.3.

The uncorrected genetic distances were calculated between the

recovered groups in phylogenetic trees for each mitochondrial gene

(cytb, coxI and d-loop) and between all individuals for ACTB and

RAG1 in Mega v.6.06 (Tamura et al., 2013), and a bootstrapping pro-

cess was performed with 1,000 repetitions.

2.5 | Species delimitation test

Species tree analysis was conducted to obtain a guide tree and spe-

ciation model, using a multispecies coalescent model (Heled & Drum-

mond, 2010) in BEAST v. 1.8.1 (Drummond, Suchard, Xie, &

Rambaut, 2012), for implementation in the Bayesian species delimi-

tation test using Bayesian phylogenetics and phylogeography (BPP v.

3.1; Yang & Rannala, 2010; Yang, 2015). For estimating the species

tree model, the analysis was performed using the assumption that

each clade recovered in the phylogenetic analyses represented a dif-

ferent species.

For the species tree ancestral reconstruction (StarBEAST) imple-

mented in BEAST, the model parameters were unlinked across cytb,

TABLE 2 Sampling locations

Site Locality Sub-basin Basin Species

1 R�ıo Ameca, puente la muerta Ameca Ameca Ilyodon furcidens

2 R�ıo Armer�ıa Ayuquila Armer�ıa Ilyodon furcidens

3 Arroyo Chacambero Medio Balsas Central Balsas Ilyodon lennoni

4 R�ıo Las Trojes Cupatitzio West Balsas Ilyodon whitei

5 Presa Copales Ayuquila Armer�ıa Ilyodon furcidens

6 Presa Tacot�an Ayuquila Armer�ıa Ilyodon furcidens

7 R�ıo Las Rosas Mascota Ameca Ilyodon furcidens

8 R�ıo Cajones Cupatitzio West Balsas Ilyodon whitei

9 R�ıo Ahuacapan Ahuacapan Ameca Ilyodon furcidens

10 Manantial Cutzar�ondiro Tac�ambaro Central Balsas Ilyodon cortesae

11 Manantial Tocumbo Tepalcatepec West Balsas Ilyodon whitei

12 Arroyo El Tule, R�ıo Tuxpan Tamazula Coahuayana Ilyodon furcidens

13 Los Horcones Tepalcatepec West Balsas Ilyodon whitei

14 Potrero Grande Ameca Ameca Ilyodon furcidens

15 Achacales Ayuquila Armer�ıa Ilyodon furcidens

16 Atenquique, R�ıo Tuxpan Tamazula Coahuayana Ilyodon whitei

17 San Jer�onimo, R�ıo Tuxpan Tamazula Coahuayana Ilyodon whitei

18 Los Pitayos, R�ıo Tuxpan Tamazula Coahuayana Ilyodon whitei

19 Arroyo La Purisima, R�ıo Tuxpan Tamazula Coahuayana Ilyodon whitei

20 Arroyo cor�ondiro, Nueva Italia. Cupatitzio West Balsas Ilyodon whitei

21 Barranca de Cuernavaca, Morelos Amacuzac East Balsas Ilyodon whitei

22 Barranca San Andr�es de la Cal Amacuzac East Balsas Ilyodon whitei

23 R�ıo Apatlaco, Jojutla Amacuzac East Balsas Ilyodon whitei

24 R�ıo Chinapa, Tzitzio Cutzamala Central Balsas Ilyodon whitei

25 R�ıo Cuautla, el ojito Amacuzac East Balsas Ilyodon whitei

26 R�ıo Rijo, Iz�ucar de Matamoros Atoyac East Balsas Ilyodon whitei

27 R�ıo Zitacuaro, Tuzantla Cutzamala Central Balsas Ilyodon whitei

28 R�ıo Yautepec, Oaxtepec Amacuzac East Balsas Ilyodon whitei

29 R�ıo Zicuir�an, Zicuir�an Cupatitzio West Balsas Ilyodon whitei

30 R�ıo Tac�ambaro, Puruar�an Tac�ambaro Central Balsas Ilyodon cortesae

31 R�ıo Cupatitizio, Parque Uruapan Cupatitzio West Balsas Ilyodon whitei
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coxI, d-loop, ACTB, and RAG1 genes. The dataset consisted of one

sequences for each gene (cytb, coxI, d-loop, ACTB, and RAG1), of

each one of the clades and sub-clades. Substitution models were set

according to the selected model for each gene by PartitionFinder v.

1.1.0 (Lanfear et al., 2012). We applied a lognormal relaxed clock

(uncorrelated) model on branch length and calibrated the cytb parti-

tion using the mutation rate of cytb in teleosts of 0.76%–2.2%/mil-

lion years (Machordom & Doadrio, 2001; Near & Benard, 2004;

Zardoya & Doadrio, 1999). We estimated the evolutionary rate of

the coxI, d-loop, RAG1, and ACTB genes relative to the cytb gene.

We selected the tree prior-species Tree: Yule process model. Markov

chain Monte Carlo analysis was run for 70 million generations, sam-

pled every 1,000 generations. We evaluated the chain convergence

with the �InL values in Tracer v. 1.5 (Rambaut & Drummond, 2007)

and summarized the results using TreeAnnotator v. 1.8.1 (Drummond

et al., 2012).

For the BPP analyses of the five concatenated genes, we used

the reversible-jump Markov chain Monte Carlo (rjMCMC) (Yang &

Rannala, 2010) algorithm to determine whether to collapse or retain

nodes throughout the phylogeny. Using the entire dataset coded by

each gene, we tested with two algorithms: Analysis A10, in which

the rjMCMC algorithm was used to move between species delimita-

tion models that were compatible with a fixed guide tree (Rannala &

Yang, 2013; Yang & Rannala, 2010), and Analysis A11 that explored

species delimitation models and species phylogenies with the nearest

neighbor interchange or sub-tree pruning and re-grafting used to

change the species tree topology and test all species tree models

from a fixed tree (Yang & Rannala, 2014).

To determine whether lineages could be considered distinct spe-

cies under a general lineage species concept, the program assessed

the probability of the node separating the species (De Queiroz,

2007). We used algorithm 0 with values of 5, 10, 15, 20 for the

fine-tuning parameter to ensure that the rjMCMC mixed effectively

in species delimitation models. We conducted analyses with priors h

and s0 (Leach�e & Fujita, 2010) to discern how the effective ancestral

population size and time of divergence influenced results. We ini-

tially set the gamma prior at h and s to the values a = 1 and 2 and

b = 10, 100, and 2000 and ran four analyses of each with different

starting seeds for two independent chains of 500,000 generations

with a burn-in of 50,000 and thinning every five generations. Finally,

to test the robustness of the results, the analysis was repeated, ran-

domizing individuals to either group to minimize the over-splitting

effect and changing the speciation model according to the genetic

results obtained (two to six species).

2.6 | Ancestral area reconstruction

The ancestral area reconstruction for the species of genus Ilyodon

was estimated using the dispersal–extinction–cladogenesis (DEC)

model of LAGRANGE (Ree, Moore, Webb, & Donoghue, 2005; Ree

& Smith, 2008), implemented in RASP v. 3.2 software (Yu, Harris,

Blair, & He,2015). The ultrametric and dichotomous tree obtained

for the five concatenated genes in BEAST software was used as the

tree topology on which mapping ancestral areas. The number of

maximum areas was kept as 2. For this analysis, we divided the dis-

tribution area of Ilyodon into four according to hydrological regions

of distribution: Ameca River, Armer�ıa River, Balsas River, and Coa-

huayana River.

3 | RESULTS

3.1 | Phylogenetic relationships

The incongruence length difference test did not show significant dif-

ferences, indicating that all genes presented the same phylogenetic

signal. The phylogenetic analyses for the mitochondrial (cytb, coxI, d-

loop: 1,600 bp; Fig. S1) and the concatenated gene dataset (cytb,

coxI, d-loop, ACTB, RAG1: 4032 bp), based on maximum likelihood

and Bayesian methods, recovered the same topology. Five well-dif-

ferentiated clades were geographically segregated but did not corre-

spond to actual basin configuration, corresponding to Ameca–

Armer�ıa (clade A), central and east Balsas (clade B), Coahuayana

lower (clade C), Coahuayana upper (clade D), and west Balsas (clade

E) watersheds. The phylogenetic relationships among the five clades

were not resolved, appearing as a large basal polytomy (Fig. 2). Clade

A clustered individuals identified as I. furcidens from Ameca and

Armer�ıa basins. Clade B clustered individuals of the central and east

Balsas basin identified as I. whitei. For clade B, two well-supported

sub-clades were identified: B1 included the Atoyac sub-basin (east

Balsas) specimens, and B2 included clustering samples from the Zita-

cuaro River of Cutzamala sub-basin (central Balsas) and the Amacu-

zac sub-basin (east Balsas). Clade C consisted of samples from the

lower Coahuayana basin identified as I. furcidens. Clade D clustered

samples of the upper Coahuayana basin identified as I. whitei. These

two species were identified on the basis of the morphology of their

mouth, teeth, head, and coloration patterns. Finally, clade E grouped

individuals of the central and western Balsas, including the sub-

basins Cutzamala, Tac�ambaro, middle Balsas, Cupatitzio, and Tepal-

catepec, comprising specimens identified as I. whitei, I. lennoni, and I.

cortesae, the last two collected in the type locality. Phylogeny based

on nuclear genes was unresolved and high polytomy was recovered,

as expected, for genes with low variation in closely related species

(Fig. S2).

The haplotype networks for the mitochondrial genes essentially

showed the general pattern of the phylogenetic analyses, with no

shared haplotypes among groups. Five corresponded to the main

clades A, B, C, D, and E and two to the sub-clades B1 and B2

(Fig. S3). The number of mutation steps between haplogroups dif-

fered depending on the marker, with 14–31 for the d-loop, 5–12 for

cytb, and 3–9 for the coxI. The six haplogroups found in mitochon-

drial networks were not recovered in the haplotype networks of the

nuclear genes (Fig. S4), and shared haplotypes were observed in

nuclear genes of the defined mitochondrial groups. For the nuclear

ACTB gene, structure was found in Ameca, Armer�ıa, and lower Coa-

huayana specimens with shared haplotypes. They were separated

from the Balsas specimens, with the exception of the samples from
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F IGURE 2 The Bayesian inference tree of Ilyodon species inferred from concatenated sequences of three mitochondrial genes (cytb, coxI,

and d-loop; 1600 bp) and two nuclear genes (ACTB and RAG1; 2432 bp) concatenated. Bayesian posterior probability (>90%) and maximum

likelihood bootstrap values (>80%) are indicated. Under the name of each clade, the taxonomic proposal of the present work is found
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the Tepalcatepec sub-basin of the west Balsas basin, which were

closely related to the upper Coahuayana samples. Samples from

upper and lower Coahuayana showed no shared haplotypes. A single

mutation step separated most of the samples from east-central Bal-

sas from those to the west-central Balsas. The samples from the

Zitacuaro River shared haplotypes with those of west Balsas,

whereas the mtDNA was consistent with samples from the Amacu-

zac River, in the east Balsas. For RAG1, the same general pattern

was observed, but haplotypes from Ameca, Armer�ıa, and the lower

and upper Coahuayana showed more shared haplotypes than they

did for the ACTB gene.

3.2 | Genetic distances and structure

The uncorrected mean genetic distances calculated between the

main clades ranged from 3.7%–10.2% for the d-loop, 1%–2.1% for

cytb, and 0.6%–1.1% for coxI (Tables S5, S6), and for nuclear genes

ranged from 0%–0.2% (Table S7). Highest genetic distance for the d-

loop and cytb genes was found between clade A and sub-clade B1,

at 10.2% and 2.1% respectively. Based on coxI, the maximum genetic

distances were observed in clades E and C with respect to sub-clade

B2, 1.1% in both cases. Within the Balsas basin (clade B, east-cen-

tral, and clade E, west-central), the mean genetic distances were

4.7% for the d-loop, 1.6% for cytb, and 1.1% for coxI. Sub-clades B1

and B2 showed mean genetic distances of 4.3% for the d-loop, 1.6%

for the cytb, and 0.8% for the coxI genes. The genetic distances

between clades C and D (lower and upper Coahuayana) were 0.5%

for cytb and coxI, 2.3% for d-loop, and 0.1% for the nuclear genes.

In all analyzed genes, significant genetic structure was observed

among a priori groups, among populations within groups, and within

populations.

For the three mitochondrial genes, the highest (p < .0001) per-

cent of variation among groups was when populations were grouped

according to phylogenetic analyses (cytb, 72.9%; cox, 73.8%; d-loop,

78.6%; Table 3) and not according to hydrological basin (cytb,

35.5%; coxI, 29.9%; d-loop, 54.3%), or recognized species (cytb,

16.4%; coxI, 24.2%; d-loop, 31.1%). For nuclear genes, the highest

(p < .0001) percent of variation was also among groups according to

the phylogenetic analyses (ACTB, 80.09%; RAG1, 45.91%) (Table 4),

but differences for RAG1 were lower than found in mitochondrial

genes and ACTB (Table 3).

3.3 | Species delimitation test

The speciation model based on the species tree estimate strongly

supported the assumption of six species. In the tests of species

delimitation implemented in BPP, we obtained strong support (poste-

rior probability of 1) for the tested speciation model of six a priori

defined species within Ilyodon (clade A: Ameca and Armer�ıa rivers;

sub-clade B1: Atoyac sub-basin of the east Balsas River basin; sub-

clade B2: Zitacuaro River of the Central Balsas and Amacuzac sub-

basins of the east Balsas basin; clade C: lower Coahuayana basin;

clade D: upper Coahuayana basin; and clade E: west Balsas River

basin). However, in the posterior analyses conducted to minimize

the over-splitting effect, reducing the number of species in the

model and randomizing individuals or splitting populations to con-

struct new clades, the posterior probability was 1 in all speciation

models applied (Figure 3). The BPP was not sensitive for species

delimitation, and no alteration of posterior probabilities of the speci-

ation model was seen when we applied different values of root age

(s0) and population size (h), showing high posterior probabilities for

models tested with both the A10 and A11 algorithms.

3.4 | Ancestral area reconstruction

Ancestral area reconstruction revealed a complex biogeographical

history for Ilyodon species, with different events of dispersion and

vicariance. The ancestral areas estimated for Ilyodon spp. were Armer�ıa

and Balsas Rivers with a marginal probability of 0.315, followed by

dispersion events to Ameca River, and one vicariance event in which

Armer�ıa and Ameca Rivers were isolated from Balsas River. A second

dispersal event was estimated from Balsas River toward Coahuayana

River with a marginal probability of 0.769; inside of Balsas basin,

several dispersal and vicariance events were estimated (Figure 4).

4 | DISCUSSION

In Central Mexico, the Pacific coast river drainages show a configu-

ration in which the upper areas of the basins drain parts of the

Mexican Plateau, while the low sections are in the Pacific Plain

(Dom�ınguez-Dom�ınguez et al., 2006). This area is located in an

active geological zone, with high volcanic activity during the late

Pliocene and early Pleistocene (1.5–3.5 Mya) (Rosas-Elguera & Urru-

tia-Fucugauchi, 1998). Specifically, the activity in the triple junction

(boundaries of the Tepic-Zacoalco, Chapala and Colima rifts), the

Tenochtitl�an fault system, and the Chapala–Oaxaca fault system

(Garc�ıa-Palomo et al., 2002; Gardu~no-Monroy et al., 1998; Rosas-

Elguera, Ferrari, Lopez-Martinez, & Urrutia-Fucugauchi, 1997), along

with climate change at the pluvial–interpluvial period beginning ca.

0.9 Mya, had a strong influence on the configuration of river basins

in the area and on distribution of freshwater fish populations

(Hewitt, 2000; Smith et al., 2002; Webb & Bartlein, 1992).

The presence of the hard polytomy in the main clades recovered

in the phylogenetic analyses makes the evolutionary history of Ilyo-

don difficult to interpret.

The phylogenetic, phylogeographic, and AMOVA results showed

six well-differentiated groups, including main clades and sub-clades,

that lack taxonomic and river basin configuration congruence: one

distributed in the Armer�ıa and Ameca basins (clade A), two in the

Coahuayana basin (clades C and D), and three belonging to the Bal-

sas basin (B1, B2, and E).

At least four scenarios can be proposed for the genetic forma-

tion of the main groups: (i) the ancestor of Ilyodon evolved in the

Armer�ıa or Balsas basins and later dispersed into the other basins, as

is hypothesised by the DEC analysis and is partial supported by the
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results showed in Dom�ınguez-Dom�ınguez et al. (2010). This hypoth-

esis was also supported by a study of helminth parasites of Ilyodon

(Mart�ınez-Aquino, Ceccarelli, Eguiarte, V�azquez-Dom�ınguez, & P�erez-

Ponce de Le�on, 2014). (ii) Isolation of Ilyodon populations occurred,

resulting in significant genetic structure in all analyzed genes,

followed by secondary contact, supported by the shared haplotypes

between drainages in the nuclear genes. This would involve a signifi-

cant but low number of migrants, with genetic drift purifying the

mitochondrial haplotype of migrants and acting on nuclear genes to

a lesser extent than expected in large populations (Qu et al., 2012;

TABLE 3 Analyses of molecular variance for groups according to hydrological basin, recognized species, and those recovered in phylogenetic

analyses [A = Ameca and Armer�ıa; B1 = east Balsas; B2 = east-central Balsas; C = lower Tuxpan River (Tamazula); D = upper Tuxpan River

(Tamazula); E = west-central Balsas] for the mitochondrial genes

Testing assumptions Source of variation % of variance Fixation index p-value

Cytb

Grouped according to hydrological

basin [Ameca, Armer�ıa,

Coahuayana and Balsas]

Among groups 35.46 ΦCT: 0.35 ns

Among populations within groups 51.85 ΦSC: 0.80 <.0001

Within populations 12.69 ΦST: 0.87 <.0001

Total 100

Grouped according to

recognized species

Among groups 16.41 ΦCT: 0.16 ns

Among populations within groups 69.45 ΦSC: 0.83 <.0001

Within populations 14.14 ΦST: 0.85 <.0001

Total 100

Grouped according to recovered

clades and sub-clades

Among groups 72.94 ΦCT: 0.72 <.0001

Among populations within groups 16.62 ΦSC: 0.61 <.0001

Within populations 10.44 ΦST: 0.89 <.0001

Total 100

cox1

Grouped according to hydrological

basin [Ameca, Armer�ıa,

Coahuayana and Balsas]

Among groups 29.95 ΦCT: 0.29 <.0001

Among populations within groups 41.85 ΦSC: 0.59 <.0001

Within populations 28.20 ΦST: 0.71 <.0001

Total 100

Grouped according to

recognized species

Among groups 24.24 ΦCT: 0.24 ns

Among populations within groups 66.78 ΦSC: 0.88 <.0001

Within populations 8.97 ΦST: 0.91 <.0001

Total 100

Grouped according to recovered

clades and sub-clades

Among groups 73.87 ΦCT: 0.73 <.0001

Among populations within groups 21.52 ΦSC: 0.82 <.0001

Within populations 4.61 ΦST: 0.95 <.0001

Total 100

d-loop

Grouped according to hydrological

basin [Ameca, Armer�ıa,

Coahuayana and Balsas]

Among groups 54.32 ΦCT: 0.54 <.0001

Among populations within groups 40.41 ΦSC: 0.88 <.0001

Within populations 5.27 ΦST: 0.94 <.0001

Total 100

Grouped according to

recognized species

Among groups 31.10 ΦCT: 0.31 ns

Among populations within groups 62.36 ΦSC: 0.90 <.0001

Within populations 6.54 ΦST: 0.93 <.0001

Total 100

Grouped according to recovered

clades and sub-clades

Among groups 78.64 ΦCT: 0.78 <.0001

Among populations within groups 15.34 ΦSC: 0.71 <.0001

Within populations 6.01 ΦST: 0.93 <.0001

Total 100

The highest values of percent of variation among groups are show in bold, while ns = not significant

BELTR�AN-L�OPEZ ET AL. | 9



Sefc, Payne, & Sorenson, 2005). Possibly only males, which likely

made up the bulk of migrants, reproduced, or selective pressures

promoted the reproductive isolation of migrant females resulting in

no shared haplotypes in mitochondrial genes (Qu et al., 2012). (iii)

The genetic structure found in mitochondrial genes and the lack of res-

olution in nuclear genes could be due to relatively recent divergence

of the main clades that shape Ilyodon, which resulted in the nuclear

genes of the two most divergent groups (Ameca/Armer�ıa vs. central

and east Balsas) showing no shared haplotypes, while divergent groups

of the west Balsas basin and Coahuayana basin do exhibit shared hap-

lotypes. This pattern in which nuclear genes resolve some structure

but not to the extent of mitochondrial genes, due to recent diversifica-

tion, has been reported for other freshwater fishes of Central Mexico

(P�erez-Rodr�ıguez et al., 2009). The last and more likely scenario for Ily-

odon genetic groups evolution is (iv) a recent and simultaneous differ-

entiation of the six genetic groups, that is supported by the similar

values of genetic distance between them, the hard basal polytomy,

and the lack of shared haplotypes in mitochondrial genes accompanied

by incomplete lineage sorting in nuclear genes (Ballard, Chernoff, &

James, 2002; Qu et al., 2012), and this also explains the low marginal

probability found in the DEC analyses for the most plausible ancestral

area. We suggest that our data are not enough for determining the

ancestral area of Ilyodon. In any case, it is evident that the biogeo-

graphical history of Ilyodon is more complex than previously reported

(Doadrio & Dom�ınguez, 2004; Dom�ınguez-Dom�ınguez et al., 2010),

mainly for lineage evolved in the Balsas basin, in which several events

of dispersal and vicariance were estimated in DEC (Figure 4).

This complex history seems to be closely related to the complex

hydrological system in the area. Genetic patterns related to connec-

tion and disconnection in Pacific slope drainages are partially sup-

ported by the goodeine species Allodontichthys spp., Xenotoca eiseni,

and Xenotoca melanosoma (Dom�ınguez-Dom�ınguez et al., 2010; Piller

et al., 2015; Webb, 2002) and other freshwater fish, such as Algan-

sea aphanea, Moxostoma sp, and Astyanax aeneus (Ornelas-Garc�ıa,

Dom�ınguez-Dom�ınguez, & Doadrio, 2008; P�erez-Rodr�ıguez et al.,

2009, 2015). Incomplete genetic data for most of these groups pre-

vent accurate comparisons with Ilyodon. Certain geological events

provide an independent line of evidence, such as the uplift of the

Sierra de Manantlan and Cacoma, the volcanic activity of the Talpa–

Mascota graben, dated 3.6 Mya (Carmichael, Lange, & Luhr, 1996),

and the reactivation of the Colima and Tamazula graben in the Plio-

cene. These geologic events are related to the configuration of the

river basin beds (Allan, 1986; Gardu~no-Monroy et al., 1998).

4.1 | Coahuayana groups

Two groups (clades C and D) were recovered in the specimens from

Coahuayana River basin, one distributed in the lower and other in

the upper Cohuayana basin. A genetic split between the upper and

lower Coahuayana populations has been suggested, based on two

cytotypes, one distributed in the upper and other in the lower Coa-

huayana (Turner, Grudzien, Adkisson, & Worrell, 1985). This is also

supported for Allodontichthys, with two related species showing the

same pattern: Allodontichthys hubbsi mainly distributed in the lower

Coahuayana and Allodontichthys tamazulae in the upper Coahuayana,

but with higher divergence than in Ilyodon (Doadrio & Dom�ınguez,

2004; Dom�ınguez-Dom�ınguez et al., 2010; Webb, 2002).

TABLE 4 Analyses of molecular variance of groups according to

hydrological basin, recognized species, and groups recovered in

phylogenetic analyses [A = Ameca and Armer�ıa; B1 = east Balsas;

B2 = east-central Balsas; C = lower Tuxpan River (Tamazula);

D = upper Tuxpan River (Tamazula); E = west-central Balsas] for the

nuclear genes.

Testing

assumptions

Source of

variation

% of

variance

Fixation

index p-value

ACTB

Grouped

according to

hydrological

basin

[Ameca,

Armer�ıa,

Coahuayana

and Balsas]

Among groups 75.81 ΦCT: 0.75 <.0001

Among populations

within groups

9.97 ΦSC: 0.41 <.0001

Within

populations

14.22 ΦST: 0.85 <.0001

Total 100

Grouped

according to

recognized

species

Among groups 71.18 ΦCT: 0.71 <.0001

Among populations

within groups

12.78 ΦSC: 0.44 <.0001

Within

populations

16.05 ΦST: 0.83 <.0001

Total 100

Grouped

according to

clades and

sub-clades

Among groups 80.09 ΦCT: 0.80 <.0001

Among populations

within groups

1.64 ΦSC: 0.08 Ns

Within

populations

18.27 ΦST: 0.81 <.0001

Total 100

RAG1

Grouped

according to

hydrological

basin [Ameca,

Armer�ıa,

Coahuayana

and Balsas]

Among groups 46.90 ΦCT: 0.46 <.0001

Among populations

within groups

15.13 ΦSC: 0.28 <.0001

Within populations 37.97 ΦST: 0.62 <.0001

Total 100

Grouped

according to

recognized

species

Among groups 41.22 ΦCT: 0.41 <.0001

Among populations

within groups

18.33 ΦSC: 0.31 <.0001

Within populations 40.46 ΦST: 0.59 <.0001

Total 100

Grouped

according to

recovered

clades and

sub-clades

Among groups 45.91 ΦCT: 0.46 <.0001

Among

populations

within groups

10.52 ΦSC: 0.19 <.0001

Within

populations

43.57 ΦST: 0.56 <.0001

Total 100

The highest values of percent of variation among groups are show in

bold, while ns = not significant
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guide trees. The speciation probabilities

are provided for each node. We consider

speciation probability values >0.95 as

strong support for speciation event
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The relationships within these groups were not resolved in the

phylogenetic trees, and the haplotype networks indicate different

relationships depending on the marker analyzed. Also, these two

clades showed the lowest genetic distances among all the pairwise

comparisons (Tables S5, S6 and S7). Mitochondrial and nuclear genes

showed no shared haplotypes between clades C and D, with the

exception of a single haplotype in RAG1. The nuclear ACTB showed

the lower Coahuayana basin samples to share haplotypes with the

Ameca–Armer�ıa clade, and the upper Coahuayana basin shared hap-

lotypes with the west Balsas population. For the RAG1 gene, the

lower Coahuayana specimens possessed unique haplotypes, with the

exception of one shared with the upper Coahuayana, Ameca, and

Armer�ıa basins. The upper Coahuayana specimens shared haplotypes

with lower Coahuayana, Ameca-Armer�ıa, and west Balsas. The most

plausible scenario is a recent isolation event of the ancestor of these

two Coahuayana groups, one in the upper and other in the lower

Coahuayana basin, as could be indicated by the low genetic dis-

tances between them (2.3% for d-loop and 0.5% for cytb and coxI),

and, by the DEC analysis, which showed several dispersal and vicari-

ance events that separated these two groups inside Coahuayana

River (marginal probability = 1.0). In this scenario, the relationships

of the nuclear genes are a product of incomplete lineage sorting or

of secondary contact between the lower Coahuayana and Armer�ıa–

Ameca populations. Secondary contact is also supported by the

occurrence of Allodontichthys zonistius, a species previously consid-

ered endemic to Armer�ıa drainages, in the lower reaches of the Coa-

huayana River, probably related to a river piracy event of nearby

(15 km) tributaries (Webb, 2002). Cytogenetic data in Ilyodon show

the cytotypes from the lower Coahuayana to be more closely related

to the Armer�ıa population than those of the upper Coahuayana

(Turner et al., 1985). Evidence of a founded population in the Ameca

and Coahuayana drainages, the source of which was an Armer�ıa

population, has also been suggested for Allodontichthys (Webb,

2002). In most of the genes analyzed, the upper Coahuayana popula-

tion seems to be close related to west Balsas specimens and even

the genetic distances are similar between lineage within Coahuayana

than between upper Coahuayana and west Balsas. This may indicate

that west Balsas specimens had secondary contact or that the upper

Coahuayana population was founded by specimens from Balsas River

as indicated by the DEC.

4.2 | Balsas basin

Three well-differentiated groups that show significant genetic struc-

ture and high divergence were identified within the Balsas River

basin (Figure 2 and Fig. S3), the clades and sub-clades B1, B2, and E.

This scenario of the formation of differentiated groups within the

Balsas river basin is supported by the results of DEC, in which sev-

eral dispersal and vicariance events have been promoted the actual

distribution of these three groups (Figure 4). Isolation of other fish

species in the Balsas watershed has been documented, including

restriction of Notropis boucardi (Sch€onhuth & Doadrio, 2003) to the

east Balsas and evidence for two divergent groups of Astyanax, one

distributed in west and other in the east Balsas basin (Ornelas-Garc�ıa

et al., 2008). The significant genetic structure and the relatively high

genetic distances observed in the Balsas populations are at the same

rank with that seen between populations of isolated drainages. This

could be explained by ancient ecological or geological barriers within

the basin, which is inferred in the mitochondrial genes. The shared

haplotypes in RAG1, along with close relationships without shared

haplotypes in ACTB, in the Balsas basin populations could be indica-

tive of secondary contact and gene flow between previously isolated

groups, as was previously suggested for the lower Coahuayana and

Armer�ıa samples. Evidence of a gene flow process within Balsas pop-

ulations was shown by the central Balsas specimens from Zitacuaro

River (Figs. S1, S3 and S4), which showed a close relationship to an

east Balsas population in mitochondrial genes, but a closer relation-

ship to west Balsas populations in the ACTB gene. Gene flow previ-

ous to isolation and gene flow among Ilyodon populations have been

suggested previously (Webb, 2002). These processes are as complex

as the geological and climatic history of the Balsas depression. Geo-

logical activity has been suggested to have similarly affect on other

endemic species, including spiders, butterflies, birds, amphibians, and

reptiles, especially in a sector of the Amacuzac sub-basin (Escalante-

Pliego, Navarro, & Peterson, 1993; Luna-Reyes, Llorente-Bousquets,

& Luis-Mart�ınez, 2008; Nieto-Casta~neda, P�erez-Miguel, & Garc�ıa-

Cano, 2014). Also, the Balsas depression is located between the

Trans-Mexican Volcanic Belt and the Sierra Madre del Sur (Cas-

ta~neda-Rico, Le�on-Paniagua, V�azquez-Dom�ınguez, & Navarro-

Sig€uenza, 2014; Ferrusqu�ıa-Villafranca, 1993) which has been active

from the Eocene and Oligocene to the present (Yarza de De la Torre,

1992), specifically the Guerrero and Morelos platforms, the Tierra

Caliente metamorphic complex and Guerrero terrane, the Taxco fault

and Arcelia graben, the Tenochtitlan fault system, and the Chapala–

Oaxaca fault system (Garc�ıa-Palomo et al., 2002; Gonz�alez-Torres

et al., 2013).

4.3 | Taxonomic implications

The species delimitation tests did not resolve the species-level tax-

onomy of Ilyodon. We suggest that a speciation model based on dif-

ferent criteria (phylogenetic relationships, genetic structure,

haplotype networks, genetic distances, and geography) is not infor-

mative when phylogenetic relationships are unresolved, low genetic

divergences in nuclear genes are observed, or shared nuclear haplo-

types are present, violating the algorithm assumptions in the species

tree and species delimitation analyses. The BEAST analysis assumes

a model in which the separation of species is complete, if this

separation is not complete, can result an incorrectly specified guide

tree or speciation model (Leach�e & Fujita, 2010) that detects species

before they are fully separated (incipient species) (Heled, Bryant, &

Drummond, 2013). Eberle, Warnock, and Ahrens (2016) have shown

that uncertainties in analyses implemented in BPP, such as guide

tree inference, individual species assignment, and prior parameter

choice, may impact the accuracy of results. However, in our tests,

the use of different prior parameters (s0 and h) did not affect the
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results, which showed high values of posterior probability in all anal-

yses (>0.95). We consider that basal hard polytomy obtained in the

phylogenetic tree, and possible over-splitting, could explain the

results obtained with the species delimitation tests (similar high pos-

terior probabilities for two to six species of Ilyodon). Hence, we con-

sider that our data do not meet the conditions and parameters

necessary for the species delimitation test. It has been shown that

both BEAST and BPP may be impacted by putative incomplete lin-

eage sorting and are inadequate for delimiting very young species,

which are difficult to distinguish on the basis of molecular or mor-

phological data alone (Eberle et al., 2016).

Despite the failure of the species delimitation test, the finding of

six well-differentiated lineages, together with the significant differen-

tiation between them revealed by AMOVA, seemed to indicate a

separate genetic identity of each group. The genetic distances calcu-

lated with mitochondrial genes are similar to those previously

reported between Ilyodon species (Doadrio & Dom�ınguez, 2004;

Dom�ınguez-Dom�ınguez et al., 2010; Webb et al., 2004). The highest

genetic distance was found between the d-loop and cytb gene of the

Ameca–Armer�ıa population (clade A) with respect to the other clades

(B1, B2, C, D, and E). For nuclear genes, the genetic distance

between these clades ranged from 0.1%–0.2% (Table S7). Previous

studies of other goodeine species showed similar genetic distances

and lack of resolution in phylogenetic analyses, as did some species

of Allotoca and Goodea, associated with recent isolations (<1 Mya) or

secondary contact events promoted by river piracy or founder effect

(Corona-Santiago et al., 2015; Doadrio & Dom�ınguez, 2004; Dom�ın-

guez-Dom�ınguez et al., 2010).

Not all species within Ilyodon were identified as monophyletic in

the phylogenetic results. The pattern of species or genera mixed in

the phylogenetic tree has also been reported for other freshwater

fishes of Mexico (Corona-Santiago et al., 2015; McMahan, Geheber,

& Piller, 2010; Ornelas-Garc�ıa et al., 2008; P�erez-Rodr�ıguez et al.,

2009). The variation among Ilyodon with morphological recognized

groups has been associated with trophic structure, with variation in

the shape and arrangement of the head, mouth, and teeth and in fish

size influenced by habitat and feeding (Grudzien & Turner, 1984a,b;

Kingston, 1979; Turner & Grosse, 1980).

All currently recognized Ilyodon species were described morpho-

logically (Paulo-Maya & Trujillo-Jim�enez, 2000), with no descriptions

based on molecular analyses. In the present study, results of molecu-

lar analyses of five genes disagree with the currently recognized tax-

onomy of Ilyodon. Our results showed lower genetic distance

between most clades than the average found for all the recognized

species of goodeines (1.7% in cytb), as well as shared haplotypes

among most main clades in nuclear genes. We also found higher

genetic divergence between the I. whitei sampled in west and east

Balsas than between samples from the Balsas and Coahuayana

basins, with evidence of interbreeding between highly divergent lin-

eages. We found significant geographic structure in Ilyodon, but not

concordance with the five previously recognized species I. furcidens,

I. xantusi, I. whitei, I. lennoni, and I. cortesae showing polyphyletic

relationships (Tables 3 and 4). Hence, taxonomic interpretations are

difficult to assess. Further genetic and morphological analyses need

to be conducted to provide a clearer picture of the taxonomy and

evolution of genetically divergent populations of Ilyodon, but some

suggestions can be made according to the priority principle and type

locality.

All specimens belonging to clade A were identified as Ilyodon fur-

cidens. Although the type locality was given as Cape San Lucas by

Eigenmann (1907), later researchers state the type locality to be R�ıo

Colima, a tributary of Armer�ıa River basin (Hubbs & Turner, 1939).

Although we did not include samples from the Colima River in the

lower Armer�ıa basin, and because of high genetic differentiation

found within other drainages, we provisionally designate the speci-

mens of clade A as I. furcidens. Since the type locality for I. xantusi is

the Colima River, in the Armer�ıa River basin, more samples from the

lower Armer�ıa need to be examined to draw a robust conclusion.

The specimens of sub-clade B1 were identified as Ilyodon whitei,

but this group showed high genetic divergence and significant struc-

ture with respect to other samples, so we considered this group as a

differentiated group of Ilyodon “whitei.”

Specimens belonging to sub-clade B2 were also identified as I.

whitei. This group included specimens collected at its type locality

(upper tributaries of Balsas, at Cuautla and Yautepec, in Morelos

state), and we considered this clade as I. whitei. Within this clade,

we found genetic flow between east Balsas (B2) and west Balsas (E)

in nuclear genes.

Specimens belonging to clade C were identified as I. furcidens,

but, because of the genetic divergence from other groups and the

possibility of interbreeding with Armer�ıa populations, we considered

this group a differentiated group of Ilyodon “furcidens.”

Specimens belonging to clade D were identified as I. whitei, but,

based on the divergence from other genetically identified I. whitei,

and the high structure found, we considered this group a differenti-

ated group of Ilyodon “whitei.”

The specimens belong to clade E were identified as I. whitei, I.

cortesae, and I. lennoni, with the latter two species collected from

the type locality. Since specimens identified as I. whitei in the type

locality (upper tributaries of Balsas, at Cuautla and Yautepec) belong

to the sub-clade B2, the specimens of clade E must be considered

Ilyodon “lennoni,” while I. cortesae was not considered a valid species.

Our results show more complex evolutionary and taxonomic

history of Ilyodon than was previously revealed by molecular studies

(Doadrio & Dom�ınguez, 2004; Dom�ınguez-Dom�ınguez et al., 2010).

In this scenario, and due to the high level of morphological differ-

entiation, a broader taxonomic and systematic work for Ilyodon spe-

cies is necessary to confirm the taxonomic status of each described

species.

4.4 | Implications for conservation

We identified at least six genetic groups, with geographic correspon-

dence, in analyses performed with mtDNA and with concatenated

mtDNA + nDNA. Each of these groups should be considered an

operational conservation unit (OCU), and effective protection of the
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OCUs could guarantee the conservation and preservation of the

genetic pool (Doadrio, Perdices, & Machordom, 1996) found within

genus Ilyodon. Ilyodon whitei is catalogued since 1996 in the red list

of endangered species as critically endangered (Contreras-Balderas &

Almada-Villela, 1996), and I. furcidens is catalogued as threatened in

the NOM-059 for the Ministry of Environmental and Natural

Resources (SEMARNAT, 2010). Based on our genetic groups recov-

ered for mitochondrial genes, we suggest a re-evaluation of the con-

servation status of the Ilyodon species or populations.
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